Φίλιοι αριθμοί
και Έτερος εγώ
Του Γιάννη ΛακούτσηΕίναι γενικά αποδεκτό πως τα πρώτα βήματα στην ανάπτυξη της θεωρίας αριθμών έγιναν από τον Πυθαγόρα και τους οπαδούς του, σε συνδυασμό με τη φιλοσοφία της αδελφότητος των πυθαγορείων, ότι οι ακέραιοι αριθμοί ελέγχουν το Σύμπαν. Μεγάλο μέρος αυτού του έργου αποτέλεσε τη βάση για το μυστικισμό που αναπτύχθηκε αργότερα πάνω στους αριθμούς. Έτσι, ο Ιάμβλιχος, ένας νεοπλατωνικός φιλόσοφος, στην πραγματεία του « Περί της Νικομάχου Αριθμητικής Εισαγωγής» στχ 35, παρατηρεί: « ..γιατί φανερά αποκαλούν κάποιους άλλους αριθμούς φίλους, επειδή παρομοίαζαν με τους αριθμούς τις αρετές και τις πολιτικές ιδιότητες, όπως το 284 και το 220, γιατί τα μέρη καθενός από αυτούς τους δύο αριθμούς γεννούν τον άλλο με βάση τη σχέση της φιλίας, όπως αποφάνθηκε ο Πυθαγόρας γιατί, όταν τον ρώτησε κάποιος «τι είναι φίλος», απάντησε: «Άλλος εγώ», πράγμα που εμφανίζεται σε αυτούς τους αριθμούς». Δύο αριθμοί, λοιπόν, καλούνται φίλιοι, ή φίλοι, όταν το άθροισμά των δυνατών πηλίκων κάθε αριθμού δίδει τον άλλον αριθμό:
220:220= 1, 220:110=2, 220:55=4, 220:44=5, 220:22=10, 220:20=11 220:11=20,
220, :10=22, 220:5=44, 220:4=55,
220:2=110. Το άθροισμα
όλων των πηλίκων
που βρέθηκαν μας
κάνουν το 284:
1+2+4+5+10+11+20+22+44+55+110=284.
Το ίδιο συμβαίνει
και με τα
πηλίκα του 284: 284:284=1, 284:142=2,
284:71=4, 284:4=71, 284:2=142. To
άθροισμα όλων των
πηλίκων είναι: 1+2+4+71+142= 220. Αυτό
το ζεύγος των
αριθμών απόκτησε μια
μυστικιστική αίγλη και
αργότερα παρέμεινε η
προκατάληψη
ότι δύο φυλαχτά
που έφεραν αυτούς
τους αριθμούς επισφράγιζαν
την τέλεια φιλία
αυτών που τα
φορούσαν. Οι αριθμοί άρχιζαν
να παίζουν σημαντικό
ρόλο στα μάγια,
την αστρολογία και
την κατασκευή του
ωροσκοπίου. « Σε
πολλά αραβικά κείμενα
εμφανίζονται συχνότατα οι φίλιοι αριθμοί.
Παίζουν κεντρικό ρόλο
στη μαγεία και
στην αστρολογία, στην
σύνταξη των ωροσκοπίων,
στην παρασκευή ερωτικών
φίλτρων και στην
κατασκευή φυλακτών» ( Η θεωρία
των αριθμών και
η ιστορία της). Τον αριθμό
220 τον συναντάμε
και στην Παλαιά
Διαθήκη, στη
Γένεση, όταν ο
Ιακώβ έδωσε 220
κατσίκια και 220
πρόβατα στον Ησαύ,
πιστεύοντας ότι ο
αριθμός αυτός, αποτελούσε
έκφραση φιλίας του
Ιακώβ προς τον
Ησαύ: « …και εκοιμήθη
εκεί την νύκτα
εκείνην και έλαβεν
ών έφερε δώρα
και εξαπέστειλεν Ησαύ τω αδελφώ
αυτού, αίγας διακοσίας, τράγους
είκοσι, πρόβατα διακόσια,
κριούς είκοσι…» (Γενεσις κεφ.32. 13-14). Μετά το
αρχικό ζεύγος φίλων
αριθμών 220 και 284, δε
βρέθηκε κανένα άλλο,
μέχρι το 1636 που ο
μεγάλος Γάλλος «αριθμοθεωρίστας» Φερμά,
ανακοίνωσε ένα άλλο
ζεύγος αριθμών, τους
17.296 και 18.146.
Σήμερα γνωρίζουμε πάνω
από 1.000 ζεύγη
φίλων αριθμών. Αναφορά
στη φιλία και
στους φίλιους αριθμούς
κάνει στο μυθιστόρημα του «Το
θεώρημα του παπαγάλου»,
εκδ. Κέδρος 2010, ο συγγραφέας
Ντενί Γκετζ, μαθηματικός,
καθηγητής της ιστορίας
των επιστημών, Ένα
ενδιαφέρον βιβλίο για
τους λάτρεις των
Μαθηματικών, για όλους
εμάς τους υπόλοιπους , απλά κουραστικό.
Με μια επιστολή
που στέλνει ο
Ελγκάρ Γκροσρούβ, παροτρύνει
τον «παλιόφιλο» Πιερ
Ρυς, να επαληθεύση
το ότι οι
διάσημοι φίλιοι αριθμοί
το 220 και
το 284 κάνουν
ένα ταιριαστό ζευγάρι:
«Με την ευκαιρία,
σου είπα τι
με είχε ¨τραβήξει¨ στον Πυθαγόρα;
Αυτός ανακάλυψε τη
λέξη «φιλία». Το
ήξερες; Όταν τον
ρώτησαν τι είναι
φίλος, απάντησε: «Αυτός
που είναι ο
άλλος σου εαυτός,
όπως το 220
και το 284». Δύο
αριθμοί είναι «φίλιοι» ή
«φιλικοί» αν ο
καθένας ισούται με
το άθροισμα όσων
μετρούν (δηλαδή διαιρούν) τον
άλλο. Οι πιο
διάσημοι φίλιοι αριθμοί
του Πυθαγόρειου Πανθέου
είναι οι 220
και 284. Κάνουν
ένα ταιριαστό ζευγάρι.
Αν έχεις καιρό,
επαλήθευσέ το. Κι
εμείς οι δύο,
είμαστε «φίλιοι»; Τί σε μετρά,
Πιέρ; Κι εμένα; Ίσως
ήρθε πια ο
καιρός να προσθέσουμε
όλα όσα μας
μέτρησαν… Με λύσσα έσβηνε
και ξανάρχιζε. Στο
τέλος, ανάμεσα σε
μουντζούρες, διαγραφές και
διορθώσεις κατέληξε: Διαιρέτες
του 220: 1,2,4,5,10,11,20,22,44,55,110. Διαιρέτες
του 284: 1,2,4,71,142.
Άθροισμα των διαιρετών
του 220; Άρχισε να
προσθέτει, έκανε λάθος, έσβησε,
ξανάρχισε. Στο τέλος
βρήκε το αποτέλεσμα:
284! Ο κ. Ρυς χαμογέλασε.
Ο μισός δρόμος
είχε γίνει! Άθροισμα
των διαιρετών του
284; Πρόσθεσε χωρίς
να κάνει ούτε ένα
λάθος και έγραψε:
220! Ένα πλατύ
χαμόγελο φώτισε το
πρόσωπό του! «Ιδού
το επαλήθευσα. Πρόκειται
πράγματι για φίλους!».
Έτερος εγώ
«Πη παρέβην;
Τι δ’ έρεξα;
Τι δε μοι
δέον ουκ ετελέσθη;»
( Τι έκανα
που δεν έπρεπε;
Τι έκανα που
έπρεπε; Τι έπρεπε
να κάνω και
δεν το έκανα;)
Με τίτλο
«έτερος εγώ» παιζόταν,
μέχρι πριν λίγες
ημέρες, στις κινηματογραφικές αίθουσες,
ένα ελληνικό αστυνομικό
θρίλερ με πυκνό
μυστήριο, συναρπαστικούς γρίφους και
μαθηματικές αναφορές. Ο σεναριογράφος
και σκηνοθέτης άντλησε
την έμπνευσή του
από μια θεωρία
του Πυθαγόρα που
συνδυάζει τα μαθηματικά
με τον ορισμό
της φιλίας. Πέντε άτομα
δολοφονούνται, (μία γυναίκα δικαστής,
ένας δικηγόρος, ένας
γιατρός, ένας οδηγός
και ο συνεπιβάτης
ενός πολυτελούς αυτοκινήτου),
Για την
εξιχνίαση των δολοφονιών
αυτών, η Αστυνομία ζητάει
τη βοήθεια ενός
αυτιστικού καθηγητή εγκληματολογίας, ο
οποίος αναλαμβάνει να
λύσει το μυστήριο
που κρύβεται πίσω
από τους πέντε
φόνους, συνδετικός κρίκος
των οποίων είναι
ο Πυθαγόρας, αρχαία
ρητά του έχουν
βρεθεί στους τόπους
των εγκλημάτων. Το μότο
της ταινίας είναι:
«Το μυαλό βρίσκει
λύσεις όταν παύει
να σκέφτεται». Οι αριθμοί
220 και 284
θα παίξουν σημαντικό
ρόλο στη διαλεύκανση
της υπόθεσης. Με
απόφαση του ίδιου
του σκηνοθέτη η
ταινία αποσύρθηκε, λόγω
της ομοιότητάς της
με την πρόσφατη
υπόθεση του δολοφόνου
του οδηγού ταξί
στην Κηφισιά. Μοναδικοί
χαμένοι οι άνθρωποι
με σύνδρομο Άσπεργκερ,
αφού δεν θα δουν να
εισρέουν στο ταμείο
τους τα έσοδα
από την κυκλοφορία
της ταινίας, όπως
είχε υποσχεθεί ο
σκηνοθέτης.